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The colors of water
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e Canonical sampling:

— Sampling efficiency: why, when and how
— NVT molecular dynamics local and global schemes

— The (generalized) Langevin equation

e A case study: liquid, flexible water

— Optimal sampling
— Preserving dynamical properties

— The making of a GLE thermostat

e Other applications of GLE thermo: call for implementers...




Molecular Dynamics

e Modelling of the dynamics of a system by reproducing the motion of the

atoms

e Numerical integration of Hamilton's equations:
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e Must modify to sample canonical ensemble




Ergodic sampling

e Ergodic hypothesis: equivalence between ensemble averages and time
averages along a trajectory

T
(A) = / dpdgA (q,p) e PH@P) = lim ~ /0 Aa(t),p () dt

T—00

— Points along the trajectory must be distributed based on e~ PH(a,p)
& fluctuation-dissipation theorem /detailed balance
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Measuring ergodicity

e The error on averages decreases with the square root of the number of
uncorrelated samples

e Sampling more often than the correlation time does not improve
convergency
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Measuring ergodicity

e The error on averages decreases with the square root of the number of
uncorrelated samples

e Autocorrelation function:

LT (A1) — (A) (A(s) - (A)) ds

(A%) — (A)7
— Will it rain as much as today?
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Measuring ergodicity

e The error on averages decreases with the square root of the number of
uncorrelated samples

e Autocorrelation function:

1 T
(A(t) A(0)) = 7 Jo (A(s+1) - <A>)(f21 (s) — (A))ds
(A%) = (A)

e Averages over a time interval T" will be affected by an error which

decreases as 1/+/T /2T
T = /OOO (A(t) A(0))dt

e Computing autocorrelation functions is hard: must sample for hundreds
of times 7!




Time scales

e The evolution of a non-trivial system is a combination of fast and slow
components

e Correspondingly, the autocorrelation function shows different time scales
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Time scales

e The evolution of a non-trivial system is a combination of fast and slow
components

e Correspondingly, the autocorrelation function shows different time scales

e Different observables may have different time scales
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Constant-Temperature MD

e Relax isolated-system hypothesis: closer to “real life” than microcanonical
MD for small systems

e One must modify Hamilton's equations (Andersen, Langevin,
Nosé-Hoover, stochastic rescaling. . . )

— Mimick the effect of a heat bath (open system, total energy
fluctuates)

— Can we define a conserved quantity (useful to check timestep)?

—f [%‘FV(Q)}

e The canonical ensemble (P (p,q) x e ) is sampled:

— Initial equilibration (bring the system quickly to temperature)
— Dynamical properties are altered

— Efficient sampling of static properties (how to improve
ergodicity?)




Local and global thermostats

e A global thermostat enforces the distribution of the
total kinetic energy

OOOO
P(K)dK oc K(Ni/2=1) =K/ksT g ¢ od o
() oOooO o}.
— Little disturbance on the dynamics, relies on in- t
ternal couplings Slohal fhern.
e A local enforces canonical distribution of individual Q
degrees of freedom g
@
P (p;) dp; e_pz/zkapo { ‘
local therm.

— Greater disturbance, actively counteracts local
imbalance




Langevin Dynamics

e A linear, Markovian stochastic equation for the momenta
p(t)=—vp(t) + v/2myTE (¢

e Constant temperature is achieved by the balance of friction and gaussian
white noise = fluctuation-dissipation theorem,

E@E)) =6t -1

e Test Langevin thermostat on a 1-d harmonic oscillator




A Langevin Oscillator

e Langevin dynamics on a 1-D oscillator with w = 1. Trajectory of kinetic
and potential energy and position, v =0, v =1 and v = 103.

H=V+K [au.]

qlau]




A Langevin Oscillator

e We can compute analytically correlation times, and distinguish different
regimes
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Optimal-sampling GLE

e What can we do if there are multiple frequencies? Only one would
respond optimally to a Langevin thermostat!
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Optimal-sampling GLE

e What can we do if there are multiple frequencies? Only one would
respond optimally to a Langevin thermostat! Use non-Markovian noise
to obtain constant efficiency!
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Let's get into water

e A critical discussion of different schemes applied to liquid water

— Water is difficult! Normal modes span several order of magnitude in
frequency

— Diffusive motion requires complex rearrangements in H-bonds
network

e Classical dynamics of liquid water using a flexible, TIP4P-like model

e \We monitor total potential energy, cell's dipole moment (necessay to
evaluate ¢, difficult to converge) and kinetic temperature projected on
internal modes, librations and center of mass motion.




Overdamped LE
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e White-noise local Langevin thermostat, v~! =1 fs

— Lightning-fast decorrelation of velocities

— Overdamped dynamics, configurational sampling is greatly slowed

down
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<f(t)f(0)>
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e White-noise local Langevin thermostat, mild friction ~~

— Slower relaxation of momenta

Mild LE

— No overdamping = reasonable sampling of positions
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Optimal Sampling LE

e Optimal-sampling LE, fitted to encompass the whole range of vibrations

— Efficient sampling of all normal modes

— Reduced overdamping, avoided slowing-down of configuration
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Optimal Sampling LE

e Optimal-sampling LE, fitted to encompass the whole range of vibrations

— Efficient sampling of all normal modes

— Reduced overdamping, avoided slowing-down of configuration
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What if we go global?

e Stochastic velocity rescaling, v~! = 1 fs. The dynamics is not disturbed

and total kinetic energy is sampled very efficiently!

— Very efficient sampling of the difficult property of total dipole
moment

— Projected temperatures relax slowly... do we really care?
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The magic of MD

e Global thermostats work nicely for slow configurational properties
because they do not disturb slow, diffusive modes
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The magic of MD

e Global thermostats work nicely for slow configurational properties
because they do not disturb slow, diffusive modes
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The magic of MD

e Global thermostats work nicely for slow configurational properties
because they do not disturb slow, diffusive modes

:I r f=Vv
1r 0.8F fK
08k : 2
7% A 0.6F f=ld” 7
£ 0.6F = ]
57 S oaf :
' 0.2F ]
0.2 - i ]
U L o] 8 =
0 _I . . . ] . . ] . . ] . . . L ]
1 10 107 10° 0 5 10 15 20
w[cm™] t[ps]

Stochastic velocity rescaling, v~ ! =1 fs

e Vibrational density of states is almost equal to NVE!
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No free lunch!

e One must pay attention when using global thermostats: local
equilibration relies on intrinsic ergodicity of the system

e This is particularly dangerous when performing metadynamics, or
quasi-equilibrium free-energy methods in general

e Energy is injected in localized modes, but only the total kinetic energy is
monitored

— Total temperature is rescaled = one feels safe but...

18




No free lunch!

e One must pay attention when using global thermostats: local
equilibration relies on intrinsic ergodicity of the system

e This is particularly dangerous when performing metadynamics, or
quasi-equilibrium free-energy methods in general
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A GLOCAL thermostat

e Let's put all the ideas together. We want to use a local thermostat, but
leave diffusive, collective motions alone. We must think global, and act
local!

e Within GLE framework one can estimate and minimize the disturbance
on selected frequencies (17 (w) parameter). Also, we require effective
coupling by maximizing ky = 1/wry .

19
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<f(f(0)>

Bechmark: global vs GLOCAL

e Comparison of sampling properties of stochastic rescale vs GLE
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Bechmark: global vs GLOCAL

e Comparison of sampling properties of stochastic rescale vs GLE
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Bechmark: global vs GLOCAL
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Conclusions: a list of caveats

Thermostatting can impact your simulation in many different ways!

e Different observables might have very different relaxation times,
and an observable might have correlations on multiple time scales

e Molecular dynamics is very good at sampling diffusive motion. |
Aggressive thermostatting might degrade sampling efficiency !

e Do not look at total kinetic temperature alone: that can be made |
to uncorrelate very quickly by just resampling momenta at every I
time-step

e Everything becomes more tricky when doing biased dynamics: im-
pacts not only efficiency but also the actual result! l

e Global thermostats do very well on strongly coupled systems, but
one must be careful, as they might hide non-equilibrium conditions.
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Conclusions: why colors?

e Testing the thermostat is boring and expensive. Still, a bad choice can
cause larger statistical and even systematic errors!

e GLE framework allows to predict the properties of the dynamics from
many points of view:

— sampling efficiency in the harmonic limit

— disturbance of the dynamical properties

e Optimal-sampling GLE provides a no-brainer local thermostat which will
be strong on local modes and won't overdamp diffusion

e With a little effort, even better performance can be obtained: it's truly a
la carte thermostating!

e You can do much more: quantum thermostat, J-termostat, more to
come... all within the same framework.

e ... will you help me implement it in established MD codes? 22




THANKS

http:/igle4md.berlios.de/
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